UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2021

CC1-Physics

Mathematical Physics-I

Time Allotted: 2 Hours

Full Marks: 40

> The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any five questions from the following:
(a) Calculate, $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$.
(b) Find out whether $\sin (\omega t)$ and $\cos (a t)$ can be two solutions of a second order homogeneous ordinary differential equations.
(c) Evaluate $\oiint_{S} \vec{r} \cdot d \vec{s}$ where S is the surface enclosing a volume V.
(d) Find ' a ' such that the vector \vec{F}
$\vec{F}=(4 x+3 y) \hat{i}+(y+2 z) \hat{j}+(x+a z) \hat{k}$ is solenoidal.
(e) Show that the function $f(x, y)=x^{2}+2 y \quad(x, y) \neq(1,2)$

$$
=0 \quad(x, y)=(1,2)
$$

is discontinuous at $(1,2)$
(f) What is the greatest rate of increase of $u=x y z^{2}$ at $(1,0,3)$?
(g) If $\vec{\nabla} \times \vec{A}=\frac{\partial \vec{B}}{\partial t}$, then show that $\vec{\nabla} \cdot \vec{B}$ is independent of t.
(h) Determine the order of the differential equation $\frac{d^{3} y}{d x^{3}}-15 \frac{d y}{d x}=e^{x}+2$.

GROUP-B

Answer any three questions from the following

2. Solve the differential equation $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=0$
3. Verify Gauss divergence theorem for a vector $\vec{V}=\hat{r} / r^{2}$, the region of integration being a sphere of radius R with centre at the origin.

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSCC1/2021

4. Prove that $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0$ in any orthogonal curvilinear coordinate system.
5. (a) Find the directional derivative of the divergence of $\vec{F}=x y \hat{i}+x y^{2} \hat{j}+z^{2} \hat{k}$ at the point $(3,1,4)$ in the direction of outwardly directed normal to the sphere $x^{2}+y^{2}+z^{2}=4$.
(b) Evaluate, $\vec{\nabla} \times(\phi \vec{\nabla} \phi)$.
6. (a) If A and B are two events with $P(A)=\frac{1}{4}, P(B)=\frac{1}{3}, P(A \cup B)=\frac{1}{2}$. Find $P(A \mid B), P(B \mid A)$.
(b) Two players A and B play a game such that the player A has probability $\frac{2}{3}$ of winning whenever it plays. If A plays 4 games, find the probability that A wins exactly 2 games.

GROUP-C

Answer any two questions from the following

7. (a) Evaluate $\left[\vec{\nabla} \cdot\left(r^{n} \vec{r}\right)\right]$. Show that $r^{n} \vec{r}$ is solenoidal for $n=-3$.
(b) If $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find $\vec{\nabla} \phi$ at the point $(1,-3,-1)$.
8. (a) Show that $\oint \vec{r} \cdot d \vec{s}=3 V$, where V is the volume enclosed by the closed surface S.
(b) Obtain the expression for $\nabla^{2} \psi$ in spherical polar coordinates.
9. (a) Express $z \hat{i}-2 x \hat{j}+y \hat{k}$ in cylindrical coordinates.
(b) Prove that
(i) $\delta(x)=\delta(-x)$
(ii) $f(x) \delta(x-a)=f(a) \delta(x-a)$
10.(a) Obtain the expression for Variance of Poisson Distribution.
(b) Using Lagrange's multiplier method, show that the rectangle of maximum area that can be inscribed in a circle is a square.
(c) Show that the functions $e^{a x} \sin b x$ and $e^{a x} \cos b x$ are linearly independent with the help of Wronskian.
