

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 1st Semester Examination, 2021

CC1-PHYSICS

MATHEMATICAL PHYSICS-I

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

- 1. Answer any *five* questions from the following:
 - (a) Calculate, $\lim_{x \to 1} \frac{x^2 1}{x 1}$.
 - (b) Find out whether $sin(\omega t)$ and $cos(\omega t)$ can be two solutions of a second order homogeneous ordinary differential equations.
 - (c) Evaluate $\oiint_{s} \vec{r} \cdot d\vec{s}$ where *S* is the surface enclosing a volume *V*.
 - (d) Find 'a' such that the vector \vec{F} $\vec{F} = (4x + 3y)\hat{i} + (y + 2z)\hat{j} + (x + az)\hat{k}$ is solenoidal.
 - (e) Show that the function $f(x, y) = x^2 + 2y$ $(x, y) \neq (1, 2)$

$$= 0$$
 $(x, y) = (1, 2)$

is discontinuous at (1, 2)

- (f) What is the greatest rate of increase of $u = xyz^2$ at (1, 0, 3)?
- (g) If $\vec{\nabla} \times \vec{A} = \frac{\partial \vec{B}}{\partial t}$, then show that $\vec{\nabla} \cdot \vec{B}$ is independent of *t*.
- (h) Determine the order of the differential equation $\frac{d^3y}{dx^3} 15\frac{dy}{dx} = e^x + 2$.

GROUP-B

Answer any three questions from the following	$5 \times 3 = 15$
---	-------------------

2. Solve the differential equation
$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$$
 5

3. Verify Gauss divergence theorem for a vector $\vec{V} = \hat{r}/r^2$, the region of integration being a sphere of radius *R* with centre at the origin.

1

5

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSCC1/2021

- 4. Prove that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$ in any orthogonal curvilinear coordinate system.
- 5. (a) Find the directional derivative of the divergence of $\vec{F} = xy\hat{i} + xy^2\hat{j} + z^2\hat{k}$ at the point (3, 1, 4) in the direction of outwardly directed normal to the sphere $x^2 + y^2 + z^2 = 4$.

5

3

2

2

(b) Evaluate, $\vec{\nabla} \times (\phi \vec{\nabla} \phi)$.

6. (a) If *A* and *B* are two events with $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$, $P(A \cup B) = \frac{1}{2}$. Find $P(A \mid B)$, $P(B \mid A)$.

(b) Two players A and B play a game such that the player A has probability $\frac{2}{3}$ of winning whenever it plays. If A plays 4 games, find the probability that A wins exactly 2 games.

GROUP-C

Answer any two questions from the following	$10 \times 2 = 20$
7. (a) Evaluate $[\vec{\nabla} \cdot (r^n \vec{r})]$. Show that $r^n \vec{r}$ is solenoidal for $n = -3$.	6
(b) If $\phi(x, y, z) = 3x^2y - y^3z^2$, find $\vec{\nabla}\phi$ at the point $(1, -3, -1)$.	4
8. (a) Show that $\oint \vec{r} \cdot d\vec{s} = 3V$, where <i>V</i> is the volume enclosed by the closed surface	<i>S</i> . 3
(b) Obtain the expression for $\nabla^2 \psi$ in spherical polar coordinates.	7
9. (a) Express $z\hat{i} - 2x\hat{j} + y\hat{k}$ in cylindrical coordinates.	5
(b) Prove that (i) $\delta(x) = \delta(-x)$	$2\frac{1}{2}+2\frac{1}{2}$
(ii) $f(x)\delta(x-a) = f(a)\delta(x-a)$	
10.(a) Obtain the expression for Variance of Poisson Distribution.	2
(b) Using Lagrange's multiplier method, show that the rectangle of maximum a that can be inscribed in a circle is a square.	rea 4
(c) Show that the functions $e^{ax} \sin bx$ and $e^{ax} \cos bx$ are linearly independent we the help of Wronskian.	vith 4

-×-